Backward stochastic difference equations for dynamic convex risk measures on a binomial tree

نویسندگان

  • Robert J. Elliott
  • Tak Kuen Siu
  • Samuel N. Cohen
چکیده

Using backward stochastic difference equations (BSDEs), this paper studies dynamic convex risk measures for risky positions in a simple discretetime, binomial tree model. A relationship between BSDEs and dynamic convex risk measures is developed using nonlinear expectations. The time consistency of dynamic convex risk measures is discussed in the binomial tree framework. A relationship between prices and risks is also established. Two particular cases of dynamic convex risk measures, namely risk measures with stochastic distortions and entropic risk measures, and their mathematical properties are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Conic Finance via Backward Stochastic Difference Equations

We present an arbitrage free theoretical framework for modeling bid and ask prices of dividend paying securities in a discrete time setup using theory of dynamic acceptability indices. In the first part of the paper we develop the theory of dynamic subscale invariant performance measures, on a general probability space, and discrete time setup. We prove a representation theorem of such measures...

متن کامل

Numerical algorithms and simulations for reflected backward stochastic differential equations with two continuous barriers

In this paper we study different algorithms for reflected backward stochastic differential equations (BSDE in short) with two continuous barriers based on binomial tree framework. We introduce numerical algorithms by penalization method and reflected method respectively. In the end simulation results are also presented.

متن کامل

From Smile Asymptotics to Market Risk Measures

The left tail of the implied volatility skew, coming from quotes on out-of-the-money put options, can be thought to reflect the market’s assessment of the risk of a huge drop in stock prices. We analyze how this market information can be integrated into the theoretical framework of convex monetary measures of risk. In particular, we make use of indifference pricing by dynamic convex risk measur...

متن کامل

Parallel Computing for Option Pricing Based on the Backward Stochastic Differential Equation

The Backward Stochastic Differential Equation (BSDE) is a robust tool for financial derivatives pricing and risk management. In this paper, we explore the opportunity for parallel computing with BSDEs in financial engineering. A binomial tree based numerical method for BSDEs is investigated and applied to option pricing. According to the special structure of the numerical model, we develop a bl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Probability

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2015